Renewable Energy Technologies
An EcoGeneration Solutions
LLC. Company
E-mail:   info @ cogeneration .net

Cooler, Cleaner, Greener Power & Energy Solutions 

Home | Contact Us | Links

 



Concentrated Animal Feeding Operations
www.ConcentratedAnimalFeedingOperations.com

 






To advertise on this site, call or email
The Renewable Energy Institute

email:  info@RenewableEnergyInstitute.org

 

Technology, Engineering, Products, Services and Information

Renewable Energy Technologies provides Anaerobic Digesters, Anaerobic Lagoons, Biogas Recovery, BioMethane, Biomass Gasification, and Methane Gas Recovery products and development services for Animal Feeding Operations and Concentrated Animal Feeding Operations.  These solutions provide significant economic and environmental savings for our clients and our planet.

Cooler, Cleaner, Greener Power & Energy Solutions  project development services are one of our many specialties. These projects are Kyoto Protocol compliant and generate clean energy and significantly fewer greenhouse gas emissions. Unlike most companies, we are equipment supplier/vendor neutral. This means we help our clients select the best equipment for their specific application. This approach provides our customers with superior performance, decreased operating expenses and increased return on investment. 

All of our our turnkey "ecogeneration" products, services and;  renewable energy technologies, waste to energy, waste to watts and waste heat recovery solutions.  

Products and services provided by Cogeneration Technologies includes the following power and energy project development services: 

  • Project Engineering Feasibility & Economic Analysis Studies  

  • Engineering, Procurement and Construction

  • Environmental Engineering & Permitting 

  • Project Funding & Financing Options; including Equity Investment, Debt Financing, Lease and Municipal Lease

  • Shared/Guaranteed Savings Program with No Capital Investment from Qualified Clients 

  • Project Commissioning 

  • 3rd Party Ownership and Project Development

  • Long-term Service Agreements

  • Operations & Maintenance 

  • Green Tag (Renewable Energy Credit, Carbon Dioxide Credits, Emission Reduction Credits) Brokerage Services; Application and Permitting

For more information: call us at: 832-758-0027

We are Renewable Energy Technologies specialists and develop clean power and energy projects that will generate a "Renewable Energy Credit," Carbon Dioxide Credits  and Emission Reduction Credits.  Some of our products and services solutions and technologies include; Absorption Chillers, Adsorption Chillers, Automated Demand Response, Biodiesel Refineries, Biofuel Refineries, Biomass Gasification, BioMethane, Canola Biodiesel, Coconut Biodiesel, Cogeneration, Concentrating Solar Power, Demand Response Programs, Demand Side Management, Energy Conservation Measures, Energy Master Planning, Engine Driven Chillers, Geothermal Heatpumps, Groundsource Heatpumps, Solar CHP, Solar Cogeneration, Rapeseed Biodiesel, Solar Electric Heat Pumps, Solar Electric Power Systems, Solar Heating and Cooling, Solar Trigeneration, Soy Biodiesel, Trigeneration, and Watersource Heatpumps.

BioMethane is generated from Anaerobic Digesters, Anaerobic Lagoons, Biomass Gasification, Biogas Recovery, BioMethane, Concentrated Animal Feeding Operations Landfill Gas to Energy, and Methane Gas Recovery.  Unlike most companies, we are equipment supplier/vendor neutral. This means we help our clients select the best equipment for their specific application. This approach provides our customers with superior performance, decreased operating expenses and increased return on investment. 

Animal Feeding Operations Information

The NPDES program regulates the discharge of pollutants from point sources to waters of the United States. Concentrated Animal Feeding Operations (CAFOs) are point sources, as defined by the CWA [Section 502(14)]. To be considered a CAFO, a facility must first be defined as an Animal Feeding Operation (AFO).

Animal Feeding Operations (AFOs) are agricultural operations where animals are kept and raised in confined situations. AFOs generally congregate animals, feed, manure, dead animals, and production operations on a small land area. Feed is brought to the animals rather than the animals grazing or otherwise seeking feed in pastures. Animal waste and wastewater can enter water bodies from spills or breaks of waste storage structures (due to accidents or excessive rain), and non-agricultural application of manure to crop land. AFOs that meet the regulatory definition of a concentrated animal feeding operation (CAFO) have the potential of being regulated under the NPDES permitting program.

An animal feeding operation (AFO) is a lot or facility (other than an aquatic animal production facility) where the following conditions are met: 

          *  Animals have been, are, or will be stabled or confined and fed or
              maintained for a total of 45 days or more in any 12-month period, and

          *  Crops, vegetation, forage growth, or post-harvest residues are not sustained
              in the normal growing season over any portion of the lot or facility. 

An operation must meet the definition of an AFO before it can be defined or designated as a concentrated animal feeding operation (CAFO). Previous EPA regulations based the definition of CAFOs on the number of "animal units" confined. EPA no longer uses the term "animal unit," but instead refers to the actual number of animals at the operation to define a CAFO. 

What are the water quality concerns related to AFOs?

Manure and wastewater from AFOs have the potential to contribute pollutants such as nitrogen and phosphorus, organic matter, sediments, pathogens, heavy metals, hormones, antibiotics, and ammonia to the environment. Excess nutrients in water (i.e., nitrogen and phosphorus) can result in or contribute to low levels of dissolved oxygen (anoxia), eutrophication, and toxic algal blooms. These conditions may be harmful to human health and, in combination with other circumstances, have been associated with outbreaks of microbes such as Pfiesteria piscicida. Decomposing organic matter (i.e., animal waste) can reduce oxygen levels and cause fish kills. Pathogens, such as Cryptosporidium, have been linked to impairments in drinking water supplies and threats to human health. Pathogens in manure can also create a food safety concern if manure is applied directly to crops at inappropriate times. In addition, pathogens are responsible for some shellfish bed closures. Nitrogen in the form of nitrate, can contaminate drinking water supplies drawn from ground water.


What is BioMethane, BioMethanation and Methanogenesis?

BioMethane is generated from organic materials as they decay.  Sources of BioMethane include; landfills, POTW's/Wastewaster Treatment Systems, and from animal operations where manure can be collected and the BioMethane is generated from anaerobic digesters where the manure decomposes. 

BioMethane, after installation of the requisite equipment, is essentially free, as opposed to buying natural gas, presently costing around $6.00/mmbtu to as high as $17.00/mmbtu this past winter.  

Methanogenesis is the production of CH4 and CO2 by biological processes that are carried out by methanogens.


More About Biomass Gasification and BioMethanation Technology 

The process of Biomass Gasification produces BioMethane. BioMethane is also produced in anaerobic digesters, in the process called anaerobic digestion.  BioMethane is a renewable energy resource, as opposed to natural gas (methane), which is a non-renewable energy resource. BioMethane has similar qualities of methane and both are used in interchangeably, and each may be a substitute for the other.  

The production and disposal of large quantities of organic and biodegradable waste without adequate or proper treatment results in widespread environmental pollution. Some waste streams can be treated by conventional methods like aeration. Compared to the aerobic method, the use of anaerobic digesters in processing these waste streams provides greater economic and environmental benefits and advantages.

As previously stated, Biomethanation is the process of conversion of organic matter in the waste (liquid or solid) to BioMethane (sometimes referred to as "BioGas) and manure by microbial action in the absence of air, known as "anaerobic digestion."

Conventional digesters such as sludge digesters and anaerobic CSTR (Continuous Stirred Tank Reactors) have been used for many decades in sewage treatment plants for stabilizing the activated sludge and sewage solids. 

Interest in BioMethanation as an economic, environmental and energy-saving waste treatment continues to gain greater interest world-wide and has led to the development of a range of anaerobic reactor designs. These high-rate, high-efficiency anaerobic digesters are also referred to as "retained biomass reactors" since they are based on the concept of retaining viable biomass by sludge immobilization.

Biomass Gasification and the Production of BioMethane


Biomass is a renewable energy resource which includes a wide variety if organic resources. A few of these include wood, agricultural residue/waste, and animal manure. 

Biomass Gasification is the process in which BioMethane is produced in the BioMass Gasification process. The BioMethane is then used like any other fuel, such as natural gas, which is not a renewable fuel.

Historically, biomass use has been characterized by low btu and low efficiencies. However, today biomass gasification is gaining world-wide recognition and favor due to the economic and environmental benefits. In terms of economic benefits, the cost of the BioMethane is essentially free, after the cost of the equipment is installed. BioMethane, probably the most important and efficient energy-conversion technology for a wide variety of biomass fuels. The large-scale deployment of efficient technology along with interventions to enhance the sustainable supply of biomass fuels can transform the energy supply situation in rural areas. 
It has the potential to become the growth engine for rural development in the country. 

Principles of Biomass Gasification


Biomass fuels such as firewood and agriculture-generated residues and wastes are generally organic.  They contain carbon, hydrogen, and oxygen along with some moisture. Under controlled conditions, characterized by low oxygen supply and high temperatures, most biomass materials can be converted into a gaseous fuel known as producer gas, which consists of carbon monoxide, hydrogen, carbon dioxide, methane and nitrogen. This thermo-chemical conversion of solid biomass into gaseous fuel is called biomass gasification. The producer gas so produced has low a calorific value (1000-1200 Kcal/Nm3), but can be burnt with a high efficiency and a good degree of control without emitting smoke. Each kilogram of air-dry biomass (10% moisture content) yields about 2.5 Nm3 of producer gas. In energy terms, the conversion efficiency of the gasification process is in the range of 60%-70%.

Multiple Advantages of Biomass Gasification in Methane Production


Conversion of solid biomass into combustible gas has all the advantages associated with using gaseous and liquid fuels such as clean combustion, compact burning equipment, 
high thermal efficiency and a good degree of control. In locations, where biomass is already available at reasonable low prices (e.g. rice mills) or in industries using fuel wood, gasifier systems offer definite economic advantages. Biomass gasification technology is also environment-friendly, because of the firewood savings and reduction in CO2 emissions.
 
Biomass gasification technology has the potential to replace diesel and other petroleum products in several applications, foreign exchange.

Applications for Biomass Gasification

Thermal applications: cooking, water boiling, steam generation, drying etc.
Motive power applications: Using producer gas as a fuel in IC engines for applications such as water pumping Electricity generation: Using producer gas in dual-fuel mode in diesel engines/as the only fuel in spark ignition engines/in gas turbines.

Publicly Owned Treatment Works ("POTW's") or Wastewater Treatment Systems

More and more, cities, counties and municipalities are faced with greater environmental compliance issues relating to their municipally-owned landfills, Publicly Owned Treatment Works ("POTW's") or Wastewater Treatment Systems.  

A city's landfill and/or POTW provides an excellent opportunity for cities to reduce their emissions as well as provide an additional revenue stream.  These facilities may have valuable gases that our company recovers and pipes to one of our clean, environmentally-friendly cogeneration or trigeneration energy systems.  

Our company provides economic and ecological solutions for cities and municipalities  with environmental liabilities (air emissions) associated with POTW operation and provide a new cash flow simultaneously.  We offer turn-key solutions for cities that includes the preliminary feasibility analysis, engineering and design, project management, permitting and commissioning.  We provide very attractive financing packages for cities that does not add to a city's liability, yet provides a valuable new revenue stream.  And, we are also able to offer a turn-key solution for qualified municipalities that includes our company owning, operating and maintaining the onsite power and energy plant.

At the heart of the system is a (Bio) Methane Gas Recovery system similar those used in Flare Gas Recovery or Vapor Recovery Units.  Methane Gas Recovery, Flare Gas Recovery, Vapor Recovery, Waste to Energy and Vapor Recovery Units all recover valuable "waste" or vented fuels that can be used to provide fuel for an onsite power generation plant.  Our waste-to-energy and waste to fuel systems significantly or entirely, reduces your facility's emissions (such as NOx , SOx, H2S, CO , CO2 and other Hazardous Air Pollutants/Greenhouse Gases) and convert these valuable emissions from an environmental problem into a new cash revenue stream and profit center.

Methane Gas Recovery and vapor recovery units can be located in hundreds of applications and locations.  At a landfill, Wastewaster Treatment System (or Publicly Owned Treatment Works - "POTW") gases from the facility can be captured from the anaerobic digesters, and manifolded/piped to one of our onsite power generation plants, and make, essentially, "free" electricity for your facility's use.  These associated "biogases" that are  generated from municipally owned landfills or wastewater treatment plants have low btu content or heating values, ranging around 550-650 btu's.  This makes them unsuitable for use in natural gas applications. When burned as fuel to generate electricity, however, these gases become a valuable source of "renewable" power and energy for the facility's use or resale to the electric grid. 

Additionally, if heat (steam and/or hot water) is required, we will incorporate our cogeneration or trigeneration system into the project and provide some, or all, of your hot water/steam requirements. Similarly, at crude oil refineries, gas processing plants, exploration and production sites, and gasoline storage/tank farm site, we convert your facility's "waste fuel" and environmental liabilities into profitable, environmentally-friendly solutions.

Our Methane Gas Recovery systems are designed and engineered for these specific applications.  It is important to note that there are many internal combustion engines or combustion turbines that are NOT suited for these applications.  Our systems are engineered precisely for your facility's application, and our engineers know the engines and turbines that will work as well as those that don't.  More importantly, we are vendor and supplier neutral!  Our only concerns are for the optimum system solution for your company, and we look past brand names and sales propaganda to determine the optimum system, which may incorporate either one or more; gas engine genset(s) or gas turbine genset(s), in cogeneration or trigeneration mode - in trigeneration mode, we incorporate absorption chillers to make chilled water for process or air-conditioning, fuel gas conditioning equipment and gas compressor(s). 

Our turn-key systems includes design, engineering, permitting, project management, commissioning, as well as financing for our qualified customers. Additionally, we may be interested in owning and operating the flare gas recovery or vapor recovery units. For these applications, there is no investment required from the customer.

For more information, please provide us with the following information about the flare gas or vapor:   

  • Type of gas being flared or vented (methane, bio-gas, digester, landfill, etc.).

  • Chromatograph Fuel/Gas analysis which provides us with the btu's (heating value) and the composition of the gas and its' impurities such as methane (and the percentage of methane), soloxanes, carbon dioxide, hydrogen, hydrogen sulfide, and any other hydrocarbons. 

  • Total amount of gas available, from all sources, at the facility.  



Employment Opportunities